
International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

8

Comparative Analysis of TCP over Multi Streaming
Protocol (SCTP) Based on Data Centers

Nandgaonkar Vikas N. Patil Chandrashekhar G. Patil Sonali C.

Abstract:-In this paper we are presenting the literature analysis
over the Stream Control Transmission Protocol (SCTP) as well
as performance analysis against TCP. We also identify
overheads associated with FTP, attributed to separate TCP
connections for data and control, non-persistence of the data
connections, and the sequential nature of command exchanges.
The SCTP protocol becomes the replacement option against
the use of TCP protocol due to kind of reliable services offered
by it. In addition to this, the mechanisms of reducing head of
line blocking in hardware assist in order calculate the CRC32
and hence this makes this protocol superior communication
protocol. During the literature we studied that SCTP protocol
is having many strong features. Apart from these advantages of
SCTP, still there are some limitations like TCP. Most of the
work of SCTP is related to WAN. In this paper our analysis
over SCTP is done with a perspective of data center.

Keywords:-TCP, SCTP, FTP, Data Center , Multistreaming

I. INTRODUCTION

The past decade has witnessed an exponential growth of
traffic in the Internet, with a proportionate increase in Hyper
Text Transfer Protocol (HTTP) [BFF96] and decline in File
Transfer Protocol (FTP) [PR85], both in terms of use and
the amount of traffic. The decline in FTP traffic is chiefly
attributed to the inflexible nature of its interface and
inefficiency in its end-to-end delay performance. Many
network researches on data center related issues continue to
focus on the front end. We are interested on the fabric needs
of inside the data center. Data centers are main part of high
performance computing and e-business. It offers web-based
services and increased complexity or size of the data to be
manipulated; performance and availability requirements of
the data to be manipulated, these requirements of data
centers continue to grow. Although TCP/IP & Ethernet are
well entrenched in data centers, Here stack does not carry
data traffic. Ethernet will continue to remain the technology
of choice for the mass market because of a variety of
reasons including entrenchment, incompatibility of IBA
with Ethernet right down at the connector level, familiarity,
commodity nature, etc. IP is expected to scale well into the
future, there are questions about TCP for supporting data
center. In network a high data rate 10 Gb/sec, protocol
offload providing low overhead/latency and maturing of IP
based storage such as iSCSI, TCP/IP/Ethernet is likely to
emerge as the unified fabric carrying all types’ traffic,
possibly on the same “pipe”. Yet, although IP is expected to
scale well into the future, there are legitimate questions
about TCP for supporting data center applications
demanding very low latencies, high data rates and high
availability/robustness. Although TCP’s weaknesses are
well known, the force of legacy makes substantial changes

to it almost impossible. SCTP (control transmission protocol
control transmission protocol) is a connection oriented
transport protocol designed for running over existing
IP/Ethernet infrastructure. This protocol shared some
features with TCP particularly the flow and congestion
control; it is designed to be a lot more robust, flexible and
extensible than TCP. SCTP was originally intended as the
transport of choice for inter-working of SS7 and VoIP
networks and was therefore designed with a view to support
SS7 layers (e.g., MTP2 and MTP3) which have a number of
unique requirements. Many of these features are useful in
the data center environment which makes SCTP a better
candidate for data center transport. The lack of SCTP makes
it easier to change the protocol or its implementation in
order to fine tune it in data centers. It provides a preliminary
look at SCTP from the data center along with the impact of
some optimizations that we studied. Further in this paper, in
section 2, gives brief about TCP, Section 3 overview of
SCTP is provided as well as discussed the major differences
between WAN and data centers from this protocol point of
view. In next section 3, presents performance results of
SCTP and TCP open source implementations in terms of
their efficiency and presented reasons of poor performance
of SCTP. Section 4: presenting the literature study over
many optimizations results those are already made by
various researchers. Finally, section: 5 concludes the paper.

II. BRIEF ABOUT TCP
Here continuity “patching” of TCP over last two decades
have made TCP flow of congestion control in a hostile
WAN environment. Before the discussion over SCTP, first
we are discussing about TCP. TCP lacks in a number of
areas including lack of integrity and robustness, poor
support for quality of service, etc. Since TCP was never
designed for use within a data center, some of its
weaknesses become particularly acute in such environments.
First we see brief overview of TCP. A TCP connection
provides a reliable, ordered byte stream abstraction between
the two transport end-points. These uses a greedy scheme to
increase flow of bytes at a rate commensurate with the
round-trip times (RTTs) until it cannot do. The basic flow of
congestion control algorithm used by TCP is the window
based AIMD (additive increase and multiplicative decrease)
where the window is increased slowly as the network is
probed for more bandwidth but cut down rapidly in the face
of congestion.

III. TCP VERSUS SCTP
Both LTE and LTE-Advanced use either TCP or SCTP, to
send messages between two peers. Since both protocols are
connection-oriented, the connection between two peers has
to be established before sending any command. The SCTP is

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

8

Comparative Analysis of TCP over Multi Streaming
Protocol (SCTP) Based on Data Centers

Nandgaonkar Vikas N. Patil Chandrashekhar G. Patil Sonali C.

Abstract:-In this paper we are presenting the literature analysis
over the Stream Control Transmission Protocol (SCTP) as well
as performance analysis against TCP. We also identify
overheads associated with FTP, attributed to separate TCP
connections for data and control, non-persistence of the data
connections, and the sequential nature of command exchanges.
The SCTP protocol becomes the replacement option against
the use of TCP protocol due to kind of reliable services offered
by it. In addition to this, the mechanisms of reducing head of
line blocking in hardware assist in order calculate the CRC32
and hence this makes this protocol superior communication
protocol. During the literature we studied that SCTP protocol
is having many strong features. Apart from these advantages of
SCTP, still there are some limitations like TCP. Most of the
work of SCTP is related to WAN. In this paper our analysis
over SCTP is done with a perspective of data center.

Keywords:-TCP, SCTP, FTP, Data Center , Multistreaming

I. INTRODUCTION

The past decade has witnessed an exponential growth of
traffic in the Internet, with a proportionate increase in Hyper
Text Transfer Protocol (HTTP) [BFF96] and decline in File
Transfer Protocol (FTP) [PR85], both in terms of use and
the amount of traffic. The decline in FTP traffic is chiefly
attributed to the inflexible nature of its interface and
inefficiency in its end-to-end delay performance. Many
network researches on data center related issues continue to
focus on the front end. We are interested on the fabric needs
of inside the data center. Data centers are main part of high
performance computing and e-business. It offers web-based
services and increased complexity or size of the data to be
manipulated; performance and availability requirements of
the data to be manipulated, these requirements of data
centers continue to grow. Although TCP/IP & Ethernet are
well entrenched in data centers, Here stack does not carry
data traffic. Ethernet will continue to remain the technology
of choice for the mass market because of a variety of
reasons including entrenchment, incompatibility of IBA
with Ethernet right down at the connector level, familiarity,
commodity nature, etc. IP is expected to scale well into the
future, there are questions about TCP for supporting data
center. In network a high data rate 10 Gb/sec, protocol
offload providing low overhead/latency and maturing of IP
based storage such as iSCSI, TCP/IP/Ethernet is likely to
emerge as the unified fabric carrying all types’ traffic,
possibly on the same “pipe”. Yet, although IP is expected to
scale well into the future, there are legitimate questions
about TCP for supporting data center applications
demanding very low latencies, high data rates and high
availability/robustness. Although TCP’s weaknesses are
well known, the force of legacy makes substantial changes

to it almost impossible. SCTP (control transmission protocol
control transmission protocol) is a connection oriented
transport protocol designed for running over existing
IP/Ethernet infrastructure. This protocol shared some
features with TCP particularly the flow and congestion
control; it is designed to be a lot more robust, flexible and
extensible than TCP. SCTP was originally intended as the
transport of choice for inter-working of SS7 and VoIP
networks and was therefore designed with a view to support
SS7 layers (e.g., MTP2 and MTP3) which have a number of
unique requirements. Many of these features are useful in
the data center environment which makes SCTP a better
candidate for data center transport. The lack of SCTP makes
it easier to change the protocol or its implementation in
order to fine tune it in data centers. It provides a preliminary
look at SCTP from the data center along with the impact of
some optimizations that we studied. Further in this paper, in
section 2, gives brief about TCP, Section 3 overview of
SCTP is provided as well as discussed the major differences
between WAN and data centers from this protocol point of
view. In next section 3, presents performance results of
SCTP and TCP open source implementations in terms of
their efficiency and presented reasons of poor performance
of SCTP. Section 4: presenting the literature study over
many optimizations results those are already made by
various researchers. Finally, section: 5 concludes the paper.

II. BRIEF ABOUT TCP
Here continuity “patching” of TCP over last two decades
have made TCP flow of congestion control in a hostile
WAN environment. Before the discussion over SCTP, first
we are discussing about TCP. TCP lacks in a number of
areas including lack of integrity and robustness, poor
support for quality of service, etc. Since TCP was never
designed for use within a data center, some of its
weaknesses become particularly acute in such environments.
First we see brief overview of TCP. A TCP connection
provides a reliable, ordered byte stream abstraction between
the two transport end-points. These uses a greedy scheme to
increase flow of bytes at a rate commensurate with the
round-trip times (RTTs) until it cannot do. The basic flow of
congestion control algorithm used by TCP is the window
based AIMD (additive increase and multiplicative decrease)
where the window is increased slowly as the network is
probed for more bandwidth but cut down rapidly in the face
of congestion.

III. TCP VERSUS SCTP
Both LTE and LTE-Advanced use either TCP or SCTP, to
send messages between two peers. Since both protocols are
connection-oriented, the connection between two peers has
to be established before sending any command. The SCTP is

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

8

Comparative Analysis of TCP over Multi Streaming
Protocol (SCTP) Based on Data Centers

Nandgaonkar Vikas N. Patil Chandrashekhar G. Patil Sonali C.

Abstract:-In this paper we are presenting the literature analysis
over the Stream Control Transmission Protocol (SCTP) as well
as performance analysis against TCP. We also identify
overheads associated with FTP, attributed to separate TCP
connections for data and control, non-persistence of the data
connections, and the sequential nature of command exchanges.
The SCTP protocol becomes the replacement option against
the use of TCP protocol due to kind of reliable services offered
by it. In addition to this, the mechanisms of reducing head of
line blocking in hardware assist in order calculate the CRC32
and hence this makes this protocol superior communication
protocol. During the literature we studied that SCTP protocol
is having many strong features. Apart from these advantages of
SCTP, still there are some limitations like TCP. Most of the
work of SCTP is related to WAN. In this paper our analysis
over SCTP is done with a perspective of data center.

Keywords:-TCP, SCTP, FTP, Data Center , Multistreaming

I. INTRODUCTION

The past decade has witnessed an exponential growth of
traffic in the Internet, with a proportionate increase in Hyper
Text Transfer Protocol (HTTP) [BFF96] and decline in File
Transfer Protocol (FTP) [PR85], both in terms of use and
the amount of traffic. The decline in FTP traffic is chiefly
attributed to the inflexible nature of its interface and
inefficiency in its end-to-end delay performance. Many
network researches on data center related issues continue to
focus on the front end. We are interested on the fabric needs
of inside the data center. Data centers are main part of high
performance computing and e-business. It offers web-based
services and increased complexity or size of the data to be
manipulated; performance and availability requirements of
the data to be manipulated, these requirements of data
centers continue to grow. Although TCP/IP & Ethernet are
well entrenched in data centers, Here stack does not carry
data traffic. Ethernet will continue to remain the technology
of choice for the mass market because of a variety of
reasons including entrenchment, incompatibility of IBA
with Ethernet right down at the connector level, familiarity,
commodity nature, etc. IP is expected to scale well into the
future, there are questions about TCP for supporting data
center. In network a high data rate 10 Gb/sec, protocol
offload providing low overhead/latency and maturing of IP
based storage such as iSCSI, TCP/IP/Ethernet is likely to
emerge as the unified fabric carrying all types’ traffic,
possibly on the same “pipe”. Yet, although IP is expected to
scale well into the future, there are legitimate questions
about TCP for supporting data center applications
demanding very low latencies, high data rates and high
availability/robustness. Although TCP’s weaknesses are
well known, the force of legacy makes substantial changes

to it almost impossible. SCTP (control transmission protocol
control transmission protocol) is a connection oriented
transport protocol designed for running over existing
IP/Ethernet infrastructure. This protocol shared some
features with TCP particularly the flow and congestion
control; it is designed to be a lot more robust, flexible and
extensible than TCP. SCTP was originally intended as the
transport of choice for inter-working of SS7 and VoIP
networks and was therefore designed with a view to support
SS7 layers (e.g., MTP2 and MTP3) which have a number of
unique requirements. Many of these features are useful in
the data center environment which makes SCTP a better
candidate for data center transport. The lack of SCTP makes
it easier to change the protocol or its implementation in
order to fine tune it in data centers. It provides a preliminary
look at SCTP from the data center along with the impact of
some optimizations that we studied. Further in this paper, in
section 2, gives brief about TCP, Section 3 overview of
SCTP is provided as well as discussed the major differences
between WAN and data centers from this protocol point of
view. In next section 3, presents performance results of
SCTP and TCP open source implementations in terms of
their efficiency and presented reasons of poor performance
of SCTP. Section 4: presenting the literature study over
many optimizations results those are already made by
various researchers. Finally, section: 5 concludes the paper.

II. BRIEF ABOUT TCP
Here continuity “patching” of TCP over last two decades
have made TCP flow of congestion control in a hostile
WAN environment. Before the discussion over SCTP, first
we are discussing about TCP. TCP lacks in a number of
areas including lack of integrity and robustness, poor
support for quality of service, etc. Since TCP was never
designed for use within a data center, some of its
weaknesses become particularly acute in such environments.
First we see brief overview of TCP. A TCP connection
provides a reliable, ordered byte stream abstraction between
the two transport end-points. These uses a greedy scheme to
increase flow of bytes at a rate commensurate with the
round-trip times (RTTs) until it cannot do. The basic flow of
congestion control algorithm used by TCP is the window
based AIMD (additive increase and multiplicative decrease)
where the window is increased slowly as the network is
probed for more bandwidth but cut down rapidly in the face
of congestion.

III. TCP VERSUS SCTP
Both LTE and LTE-Advanced use either TCP or SCTP, to
send messages between two peers. Since both protocols are
connection-oriented, the connection between two peers has
to be established before sending any command. The SCTP is

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

9

a transport protocol identified, which works at an equivalent
level in the stack as TCP and UDP.
Compared to TCP and UDP, the SCTP is superior in
functionality and more robust against the failures in the
network connections. The purpose in employing SCTP is to
provide an efficient and reliable signaling bearer. To achieve
this, the SCTP provides appropriate congestion control
techniques with fast retransmission in the case of packet loss
and enhanced reliability. Furthermore, it provides extra
security against blind attacks and enhances security feature,
when connected on top of UMTS and other 3G systems with
different operators.
When the functionalities of TCP and SCTP are compared, it
is evident that the later provides two key features, multi-
streaming and multi-homing, which lacks in TCP. In the
SCTP domain, a stream is a unidirectional sequence of user
packets to be distributed to upper layers. Consequently,
bidirectional communication between two entities includes
at least a pair of streams, one in each direction. The multi-
streaming is the feature, from which the name of STCP is
actually derived. It permits setting up several independent
streams between two peers. In such a case, when a
transmission error happens on one stream, it does not affect
the transmission on the other streams.

Table 1 . Comparison of TCP/UDP/SCTP

In contrast, TCP only provides one stream for a given
connection between IP peers, which may cause additional
data transmission delay when packets dropped. When a
transmission loss happens on a TCP connection, the packet
delivery is suspended until the missing parts are restored.
SCTP provides new services and features for IP
communication. However, the TCP provides reliable
communication service and the UDP provides unreliable
service but neither TCP nor UDP can handle multi-homing
or have the ability to send information to an alternate
address, if the primary becomes unreachable. Many of the
features found in TCP and UDP can be found in SCTP.

Comparative results between SCTP, TCP and UDP are
provided in Table 1.

IV. MULTI STREAMING SCTP

SCTP adopts congestion/flow control scheme of TCP except
for some minor differences [3]. This makes SCTP not only
“TCP friendly”, but mostly indistinguishable from TCP in
its congestion behavior. The negative side to this is QoS
related issues and complexity as discussed later. However,
SCTP does provide the following enhancements over TCP.
We point these out primarily for their usefulness in a data
center. 1. Multi-streaming: An SCTP association (or loosely
speaking a connection) can have multiple “streams”, each of
which defines a logical channel, somewhat like the virtual-
lane in the IBA context [5]. The flow and congestion control
are still on a per association basis, however. Streams can be
exploited, for example, to accord higher priority to IPC
control messages over IPC data messages and for other
purposes [7]. However, inter-stream priority is currently not
a standard feature. 2. Flexible ordering: Each SCTP stream
can be designated for an in-order or immediate delivery to
the upper layer. Unordered delivery reduces latency, which
is often more important than strict ordering for transactional
applications. 3. Multi-homing: An SCTP association can
specify multiple “endpoints” on each end of the connection,
which increases connection level fault tolerance (depending
on available path diversity). This is an essential feature to
achieve five 9’s availability that data centers desire [4]. 4.
Protection against denial of service: SCTP connection setup
involves 4 messages (unlike 3 for TCP) and avoids
depositing any state at the “called” endpoint until it has
ensured that the other end is genuinely interested in setting
up an association. This makes SCTP less prone to DoS
attacks. 5. Robust association establishment: An SCTP
association establishes a verification tag which must be
supplied for all subsequent data transfer. This feature,
coupled with 32-bit CRC and heartbeat mechanism makes
SCTP more robust. This is crucial within the data center at
high data rates.
The key to SCTP’s extensibility is the “chunk” feature. Each
SCTP operation (data send, heartbeat send, connection init,)
is sent as a “chunk” with its own header to identify such
things as type, size, and other parameters. A SCTP packet
can optionally “bundle” as many chunks as will fit in the
specified MTU size. Chunks are never split between
successive SCTP packets. Chunks are picked up for
transmission in the order they are posted to the queue except
that control chunks always get priority over data chunks.
SCTP does not provide any ordering or reliable transmission
of control chunks (but does so for data chunks). New chunk
types can be introduced to provide a new capability, which
makes SCTP quite extensible.

A) SCTP Environments Analysis

2BData centers have a number of requirements that are quite
different from those for general WAN. In addition, data
centers require much higher levels of availability,

Feature TCP UDP SCTP
Connection oriented Y N Y
Reliable transport Y N Y
Preserve message

Boundary
N Y Y

In-order delivery Y N Y
Un-order deliver N Y Y
Data checksum Y(16bit) Y(16bit) Y (32bit)
Flow & Congestion

Control
Y N Y

Multiple streams

within a session
N N Y

Multi-homing

Support
N N Y

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

9

a transport protocol identified, which works at an equivalent
level in the stack as TCP and UDP.
Compared to TCP and UDP, the SCTP is superior in
functionality and more robust against the failures in the
network connections. The purpose in employing SCTP is to
provide an efficient and reliable signaling bearer. To achieve
this, the SCTP provides appropriate congestion control
techniques with fast retransmission in the case of packet loss
and enhanced reliability. Furthermore, it provides extra
security against blind attacks and enhances security feature,
when connected on top of UMTS and other 3G systems with
different operators.
When the functionalities of TCP and SCTP are compared, it
is evident that the later provides two key features, multi-
streaming and multi-homing, which lacks in TCP. In the
SCTP domain, a stream is a unidirectional sequence of user
packets to be distributed to upper layers. Consequently,
bidirectional communication between two entities includes
at least a pair of streams, one in each direction. The multi-
streaming is the feature, from which the name of STCP is
actually derived. It permits setting up several independent
streams between two peers. In such a case, when a
transmission error happens on one stream, it does not affect
the transmission on the other streams.

Table 1 . Comparison of TCP/UDP/SCTP

In contrast, TCP only provides one stream for a given
connection between IP peers, which may cause additional
data transmission delay when packets dropped. When a
transmission loss happens on a TCP connection, the packet
delivery is suspended until the missing parts are restored.
SCTP provides new services and features for IP
communication. However, the TCP provides reliable
communication service and the UDP provides unreliable
service but neither TCP nor UDP can handle multi-homing
or have the ability to send information to an alternate
address, if the primary becomes unreachable. Many of the
features found in TCP and UDP can be found in SCTP.

Comparative results between SCTP, TCP and UDP are
provided in Table 1.

IV. MULTI STREAMING SCTP

SCTP adopts congestion/flow control scheme of TCP except
for some minor differences [3]. This makes SCTP not only
“TCP friendly”, but mostly indistinguishable from TCP in
its congestion behavior. The negative side to this is QoS
related issues and complexity as discussed later. However,
SCTP does provide the following enhancements over TCP.
We point these out primarily for their usefulness in a data
center. 1. Multi-streaming: An SCTP association (or loosely
speaking a connection) can have multiple “streams”, each of
which defines a logical channel, somewhat like the virtual-
lane in the IBA context [5]. The flow and congestion control
are still on a per association basis, however. Streams can be
exploited, for example, to accord higher priority to IPC
control messages over IPC data messages and for other
purposes [7]. However, inter-stream priority is currently not
a standard feature. 2. Flexible ordering: Each SCTP stream
can be designated for an in-order or immediate delivery to
the upper layer. Unordered delivery reduces latency, which
is often more important than strict ordering for transactional
applications. 3. Multi-homing: An SCTP association can
specify multiple “endpoints” on each end of the connection,
which increases connection level fault tolerance (depending
on available path diversity). This is an essential feature to
achieve five 9’s availability that data centers desire [4]. 4.
Protection against denial of service: SCTP connection setup
involves 4 messages (unlike 3 for TCP) and avoids
depositing any state at the “called” endpoint until it has
ensured that the other end is genuinely interested in setting
up an association. This makes SCTP less prone to DoS
attacks. 5. Robust association establishment: An SCTP
association establishes a verification tag which must be
supplied for all subsequent data transfer. This feature,
coupled with 32-bit CRC and heartbeat mechanism makes
SCTP more robust. This is crucial within the data center at
high data rates.
The key to SCTP’s extensibility is the “chunk” feature. Each
SCTP operation (data send, heartbeat send, connection init,)
is sent as a “chunk” with its own header to identify such
things as type, size, and other parameters. A SCTP packet
can optionally “bundle” as many chunks as will fit in the
specified MTU size. Chunks are never split between
successive SCTP packets. Chunks are picked up for
transmission in the order they are posted to the queue except
that control chunks always get priority over data chunks.
SCTP does not provide any ordering or reliable transmission
of control chunks (but does so for data chunks). New chunk
types can be introduced to provide a new capability, which
makes SCTP quite extensible.

A) SCTP Environments Analysis

2BData centers have a number of requirements that are quite
different from those for general WAN. In addition, data
centers require much higher levels of availability,

Feature TCP UDP SCTP
Connection oriented Y N Y
Reliable transport Y N Y
Preserve message

Boundary
N Y Y

In-order delivery Y N Y
Un-order deliver N Y Y
Data checksum Y(16bit) Y(16bit) Y (32bit)
Flow & Congestion

Control
Y N Y

Multiple streams

within a session
N N Y

Multi-homing

Support
N N Y

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

9

a transport protocol identified, which works at an equivalent
level in the stack as TCP and UDP.
Compared to TCP and UDP, the SCTP is superior in
functionality and more robust against the failures in the
network connections. The purpose in employing SCTP is to
provide an efficient and reliable signaling bearer. To achieve
this, the SCTP provides appropriate congestion control
techniques with fast retransmission in the case of packet loss
and enhanced reliability. Furthermore, it provides extra
security against blind attacks and enhances security feature,
when connected on top of UMTS and other 3G systems with
different operators.
When the functionalities of TCP and SCTP are compared, it
is evident that the later provides two key features, multi-
streaming and multi-homing, which lacks in TCP. In the
SCTP domain, a stream is a unidirectional sequence of user
packets to be distributed to upper layers. Consequently,
bidirectional communication between two entities includes
at least a pair of streams, one in each direction. The multi-
streaming is the feature, from which the name of STCP is
actually derived. It permits setting up several independent
streams between two peers. In such a case, when a
transmission error happens on one stream, it does not affect
the transmission on the other streams.

Table 1 . Comparison of TCP/UDP/SCTP

In contrast, TCP only provides one stream for a given
connection between IP peers, which may cause additional
data transmission delay when packets dropped. When a
transmission loss happens on a TCP connection, the packet
delivery is suspended until the missing parts are restored.
SCTP provides new services and features for IP
communication. However, the TCP provides reliable
communication service and the UDP provides unreliable
service but neither TCP nor UDP can handle multi-homing
or have the ability to send information to an alternate
address, if the primary becomes unreachable. Many of the
features found in TCP and UDP can be found in SCTP.

Comparative results between SCTP, TCP and UDP are
provided in Table 1.

IV. MULTI STREAMING SCTP

SCTP adopts congestion/flow control scheme of TCP except
for some minor differences [3]. This makes SCTP not only
“TCP friendly”, but mostly indistinguishable from TCP in
its congestion behavior. The negative side to this is QoS
related issues and complexity as discussed later. However,
SCTP does provide the following enhancements over TCP.
We point these out primarily for their usefulness in a data
center. 1. Multi-streaming: An SCTP association (or loosely
speaking a connection) can have multiple “streams”, each of
which defines a logical channel, somewhat like the virtual-
lane in the IBA context [5]. The flow and congestion control
are still on a per association basis, however. Streams can be
exploited, for example, to accord higher priority to IPC
control messages over IPC data messages and for other
purposes [7]. However, inter-stream priority is currently not
a standard feature. 2. Flexible ordering: Each SCTP stream
can be designated for an in-order or immediate delivery to
the upper layer. Unordered delivery reduces latency, which
is often more important than strict ordering for transactional
applications. 3. Multi-homing: An SCTP association can
specify multiple “endpoints” on each end of the connection,
which increases connection level fault tolerance (depending
on available path diversity). This is an essential feature to
achieve five 9’s availability that data centers desire [4]. 4.
Protection against denial of service: SCTP connection setup
involves 4 messages (unlike 3 for TCP) and avoids
depositing any state at the “called” endpoint until it has
ensured that the other end is genuinely interested in setting
up an association. This makes SCTP less prone to DoS
attacks. 5. Robust association establishment: An SCTP
association establishes a verification tag which must be
supplied for all subsequent data transfer. This feature,
coupled with 32-bit CRC and heartbeat mechanism makes
SCTP more robust. This is crucial within the data center at
high data rates.
The key to SCTP’s extensibility is the “chunk” feature. Each
SCTP operation (data send, heartbeat send, connection init,)
is sent as a “chunk” with its own header to identify such
things as type, size, and other parameters. A SCTP packet
can optionally “bundle” as many chunks as will fit in the
specified MTU size. Chunks are never split between
successive SCTP packets. Chunks are picked up for
transmission in the order they are posted to the queue except
that control chunks always get priority over data chunks.
SCTP does not provide any ordering or reliable transmission
of control chunks (but does so for data chunks). New chunk
types can be introduced to provide a new capability, which
makes SCTP quite extensible.

A) SCTP Environments Analysis

2BData centers have a number of requirements that are quite
different from those for general WAN. In addition, data
centers require much higher levels of availability,

Feature TCP UDP SCTP
Connection oriented Y N Y
Reliable transport Y N Y
Preserve message

Boundary
N Y Y

In-order delivery Y N Y
Un-order deliver N Y Y
Data checksum Y(16bit) Y(16bit) Y (32bit)
Flow & Congestion

Control
Y N Y

Multiple streams

within a session
N N Y

Multi-homing

Support
N N Y

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

10

robustness, flexible ordering, efficient multiparty
communication, etc. which are crucial but beyond the scope
of this paper. In a WAN environment, the primary concerns
for a reliable connection protocol are (a) each flow should
adapt automatically to the environment and provide the
highest possible throughput under packet loss, and (b) be
fair to other competing flows. Although these goals are still
important in data centers, there are other, often more
important goals, that the protocol must satisfy. Data centers
are usually organized in tiers with client traffic
originating/terminating at the front end server. The interior
of the data centers portray multiple connected clusters,
which is the main focus here. The key characteristics of
these communications (compared with WAN) include: (a)
much higher data rates, (b) much smaller and less variable
round-trip times (RTTs), (c) higher installed capacity and
hence less chances of severe congestion, (d) low to very low
end to end latency requirements, and (e) unique quality of
service (QoS) needs. These requirements have several
consequences. First and foremost, a low protocol processing
overhead is far more important than improvements in
achievable throughput under packet losses. Second,
achieving low communication latency is more important
than using the available BW most effectively. This results in
very different tradeoffs and protocol architecture than in a
WAN. A look at the existing data center protocols such as
IBA or Myrinet would confirm these observations. For
example, a crucial performance metric for data center
transport is number of CPU cycles per transfer (or CPU
utilization for a given throughput). It is interesting to note in
this regard that most WAN focused papers do not even
bother to report CPU utilization. The data center
characteristics also imply other differences. For example,
the aforementioned fairness property is less important than
the ability to provide different applications bandwidths in
proportion of their needs, negotiated SLAs, or other criteria
determined by the administrator. Also, the data center
environment demands a much higher level of availability,
diagonosability and robustness. The robustness requirements
generally increase with the speeds involved. For example,
the 16-bit CRC used by TCP is finadequate at multi-gigabit
rates. Protocol implementations have traditionally relied on
multiple memory-to-memory (M2M) copies as a means of
convenient interfacing of disparate software layers. For
example, in the traditional socket based communications,
socket buffers are maintained by the OS separate from user
buffers. This requires not only a M2M copy but also a
context switch both of which are expensive. In particular,
for large data transfers (e.g., in case of iSCSI transferring
8KB or large data chunks), M2M copies may result in
substantial cost in terms of CPU cycles, processor bus BW,
memory controller BW and, of course, the latency. Ideally,
one would like to implement 0-copy sends and receives
and standard mechanisms are becoming available for the
purpose. In particular, RDMA (remote DMA) is gaining
wide acceptance as an efficient 0-copy transfer protocol
[8,11]. However, an effective implementation of RDMA
becomes very difficult on top of a byte stream abstraction.

In particular, implementing RDMA on top of TCP requires a
shim layer called MPA (Marker PDU Alignment) which is a
high data touch layer that could be problematic at high data
rates (due to memory BW, caching and access latency
issues). A message oriented protocol such as SCTP is by
comparison can interface with RDMA much more easily.
There are other differences as well between WAN and data
center environments. We shall address them in the context
of optimizing SCTP for data centers.

V. TCP VS. SCTP PERFORMANCE

ANALYSIS

A major stumbling block in making performance
comparison between TCP and SCTP is the vast difference in
the maturity level of the two protocols. SCTP being
relatively new, good open-source implementations simply
do not exist. Two native-mode, non-proprietary
implementations that we examined are (a) LK-SCTP
(http://lksctp.sourceforge.net/): An open-source version that
runs under Linux 2.6 Kernel, and (b) KAME
(http://www.sctp.org): a free-BSD implementation
developed by Cisco. We chose the first one for the
experimentation because of difficulties in running the latter,
lack of tools (e.g., VTuneOprofile, Emon, SAR) for free
BSD, and more familiarity with Linux. LK-SCTP was
installed on two 2.8 GHz Prestonia Pentium IV machines
(HT disabled) -- one used as a server and the other as a
client --with 512 KB second level cache (no level 3 cache) –
each running R.H 9.0 with 2.6 Kernel. Each machine had
one or more Intel GBGb NICs. One machine was used as a
server and the other as a client. Many of the tests involved
unidirectional data transfer (a bit like TTCP) using a
tweaked version of the iPerf tool that comes with LK-SCTP
distribution. iPerf sends back to back messages of a given
size. iPerf doesn’t have multi-streaming capability. Multi-
streaming tests were done using a small traffic generator that
we cobbled up. Before making a comparison between TCP
and SCTP, it is important ensure that they are configured
identically. One major issue is that of HW offloading. Most
current NICs provide the capability of TCP checksum
offload and Transport Segmentation Offload. (TSO). None
of these features are available for SCTP. In particular, SCTP
uses CRC-32 (as opposed CRC-16). We found that
checksum calculation is very CPU intensive. In terms of
CPU cycles, CRC-32 increases the protocol processing cost
by 24% on the send side and a whopping 42% on the receive
side! Quite clearly, high speed operation of SCTP demands
CRC32 offload. Therefore, we simply removed the CRC
code from SCTP implementation, which is almost
equivalent to doing it in special purpose HW. TSO for SCTP
would have to be lot more complex than that for TCP and
will clearly require new hardware. Therefore, we disabled
TSO for TCP, so that both protocols would do segmentation
in SW. However, one discrepancy remains. The message
based nature of SCTP requires some additional work (e.g.,
message boundary recognition on both ends) which TCP

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

10

robustness, flexible ordering, efficient multiparty
communication, etc. which are crucial but beyond the scope
of this paper. In a WAN environment, the primary concerns
for a reliable connection protocol are (a) each flow should
adapt automatically to the environment and provide the
highest possible throughput under packet loss, and (b) be
fair to other competing flows. Although these goals are still
important in data centers, there are other, often more
important goals, that the protocol must satisfy. Data centers
are usually organized in tiers with client traffic
originating/terminating at the front end server. The interior
of the data centers portray multiple connected clusters,
which is the main focus here. The key characteristics of
these communications (compared with WAN) include: (a)
much higher data rates, (b) much smaller and less variable
round-trip times (RTTs), (c) higher installed capacity and
hence less chances of severe congestion, (d) low to very low
end to end latency requirements, and (e) unique quality of
service (QoS) needs. These requirements have several
consequences. First and foremost, a low protocol processing
overhead is far more important than improvements in
achievable throughput under packet losses. Second,
achieving low communication latency is more important
than using the available BW most effectively. This results in
very different tradeoffs and protocol architecture than in a
WAN. A look at the existing data center protocols such as
IBA or Myrinet would confirm these observations. For
example, a crucial performance metric for data center
transport is number of CPU cycles per transfer (or CPU
utilization for a given throughput). It is interesting to note in
this regard that most WAN focused papers do not even
bother to report CPU utilization. The data center
characteristics also imply other differences. For example,
the aforementioned fairness property is less important than
the ability to provide different applications bandwidths in
proportion of their needs, negotiated SLAs, or other criteria
determined by the administrator. Also, the data center
environment demands a much higher level of availability,
diagonosability and robustness. The robustness requirements
generally increase with the speeds involved. For example,
the 16-bit CRC used by TCP is finadequate at multi-gigabit
rates. Protocol implementations have traditionally relied on
multiple memory-to-memory (M2M) copies as a means of
convenient interfacing of disparate software layers. For
example, in the traditional socket based communications,
socket buffers are maintained by the OS separate from user
buffers. This requires not only a M2M copy but also a
context switch both of which are expensive. In particular,
for large data transfers (e.g., in case of iSCSI transferring
8KB or large data chunks), M2M copies may result in
substantial cost in terms of CPU cycles, processor bus BW,
memory controller BW and, of course, the latency. Ideally,
one would like to implement 0-copy sends and receives
and standard mechanisms are becoming available for the
purpose. In particular, RDMA (remote DMA) is gaining
wide acceptance as an efficient 0-copy transfer protocol
[8,11]. However, an effective implementation of RDMA
becomes very difficult on top of a byte stream abstraction.

In particular, implementing RDMA on top of TCP requires a
shim layer called MPA (Marker PDU Alignment) which is a
high data touch layer that could be problematic at high data
rates (due to memory BW, caching and access latency
issues). A message oriented protocol such as SCTP is by
comparison can interface with RDMA much more easily.
There are other differences as well between WAN and data
center environments. We shall address them in the context
of optimizing SCTP for data centers.

V. TCP VS. SCTP PERFORMANCE

ANALYSIS

A major stumbling block in making performance
comparison between TCP and SCTP is the vast difference in
the maturity level of the two protocols. SCTP being
relatively new, good open-source implementations simply
do not exist. Two native-mode, non-proprietary
implementations that we examined are (a) LK-SCTP
(http://lksctp.sourceforge.net/): An open-source version that
runs under Linux 2.6 Kernel, and (b) KAME
(http://www.sctp.org): a free-BSD implementation
developed by Cisco. We chose the first one for the
experimentation because of difficulties in running the latter,
lack of tools (e.g., VTuneOprofile, Emon, SAR) for free
BSD, and more familiarity with Linux. LK-SCTP was
installed on two 2.8 GHz Prestonia Pentium IV machines
(HT disabled) -- one used as a server and the other as a
client --with 512 KB second level cache (no level 3 cache) –
each running R.H 9.0 with 2.6 Kernel. Each machine had
one or more Intel GBGb NICs. One machine was used as a
server and the other as a client. Many of the tests involved
unidirectional data transfer (a bit like TTCP) using a
tweaked version of the iPerf tool that comes with LK-SCTP
distribution. iPerf sends back to back messages of a given
size. iPerf doesn’t have multi-streaming capability. Multi-
streaming tests were done using a small traffic generator that
we cobbled up. Before making a comparison between TCP
and SCTP, it is important ensure that they are configured
identically. One major issue is that of HW offloading. Most
current NICs provide the capability of TCP checksum
offload and Transport Segmentation Offload. (TSO). None
of these features are available for SCTP. In particular, SCTP
uses CRC-32 (as opposed CRC-16). We found that
checksum calculation is very CPU intensive. In terms of
CPU cycles, CRC-32 increases the protocol processing cost
by 24% on the send side and a whopping 42% on the receive
side! Quite clearly, high speed operation of SCTP demands
CRC32 offload. Therefore, we simply removed the CRC
code from SCTP implementation, which is almost
equivalent to doing it in special purpose HW. TSO for SCTP
would have to be lot more complex than that for TCP and
will clearly require new hardware. Therefore, we disabled
TSO for TCP, so that both protocols would do segmentation
in SW. However, one discrepancy remains. The message
based nature of SCTP requires some additional work (e.g.,
message boundary recognition on both ends) which TCP

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

10

robustness, flexible ordering, efficient multiparty
communication, etc. which are crucial but beyond the scope
of this paper. In a WAN environment, the primary concerns
for a reliable connection protocol are (a) each flow should
adapt automatically to the environment and provide the
highest possible throughput under packet loss, and (b) be
fair to other competing flows. Although these goals are still
important in data centers, there are other, often more
important goals, that the protocol must satisfy. Data centers
are usually organized in tiers with client traffic
originating/terminating at the front end server. The interior
of the data centers portray multiple connected clusters,
which is the main focus here. The key characteristics of
these communications (compared with WAN) include: (a)
much higher data rates, (b) much smaller and less variable
round-trip times (RTTs), (c) higher installed capacity and
hence less chances of severe congestion, (d) low to very low
end to end latency requirements, and (e) unique quality of
service (QoS) needs. These requirements have several
consequences. First and foremost, a low protocol processing
overhead is far more important than improvements in
achievable throughput under packet losses. Second,
achieving low communication latency is more important
than using the available BW most effectively. This results in
very different tradeoffs and protocol architecture than in a
WAN. A look at the existing data center protocols such as
IBA or Myrinet would confirm these observations. For
example, a crucial performance metric for data center
transport is number of CPU cycles per transfer (or CPU
utilization for a given throughput). It is interesting to note in
this regard that most WAN focused papers do not even
bother to report CPU utilization. The data center
characteristics also imply other differences. For example,
the aforementioned fairness property is less important than
the ability to provide different applications bandwidths in
proportion of their needs, negotiated SLAs, or other criteria
determined by the administrator. Also, the data center
environment demands a much higher level of availability,
diagonosability and robustness. The robustness requirements
generally increase with the speeds involved. For example,
the 16-bit CRC used by TCP is finadequate at multi-gigabit
rates. Protocol implementations have traditionally relied on
multiple memory-to-memory (M2M) copies as a means of
convenient interfacing of disparate software layers. For
example, in the traditional socket based communications,
socket buffers are maintained by the OS separate from user
buffers. This requires not only a M2M copy but also a
context switch both of which are expensive. In particular,
for large data transfers (e.g., in case of iSCSI transferring
8KB or large data chunks), M2M copies may result in
substantial cost in terms of CPU cycles, processor bus BW,
memory controller BW and, of course, the latency. Ideally,
one would like to implement 0-copy sends and receives
and standard mechanisms are becoming available for the
purpose. In particular, RDMA (remote DMA) is gaining
wide acceptance as an efficient 0-copy transfer protocol
[8,11]. However, an effective implementation of RDMA
becomes very difficult on top of a byte stream abstraction.

In particular, implementing RDMA on top of TCP requires a
shim layer called MPA (Marker PDU Alignment) which is a
high data touch layer that could be problematic at high data
rates (due to memory BW, caching and access latency
issues). A message oriented protocol such as SCTP is by
comparison can interface with RDMA much more easily.
There are other differences as well between WAN and data
center environments. We shall address them in the context
of optimizing SCTP for data centers.

V. TCP VS. SCTP PERFORMANCE

ANALYSIS

A major stumbling block in making performance
comparison between TCP and SCTP is the vast difference in
the maturity level of the two protocols. SCTP being
relatively new, good open-source implementations simply
do not exist. Two native-mode, non-proprietary
implementations that we examined are (a) LK-SCTP
(http://lksctp.sourceforge.net/): An open-source version that
runs under Linux 2.6 Kernel, and (b) KAME
(http://www.sctp.org): a free-BSD implementation
developed by Cisco. We chose the first one for the
experimentation because of difficulties in running the latter,
lack of tools (e.g., VTuneOprofile, Emon, SAR) for free
BSD, and more familiarity with Linux. LK-SCTP was
installed on two 2.8 GHz Prestonia Pentium IV machines
(HT disabled) -- one used as a server and the other as a
client --with 512 KB second level cache (no level 3 cache) –
each running R.H 9.0 with 2.6 Kernel. Each machine had
one or more Intel GBGb NICs. One machine was used as a
server and the other as a client. Many of the tests involved
unidirectional data transfer (a bit like TTCP) using a
tweaked version of the iPerf tool that comes with LK-SCTP
distribution. iPerf sends back to back messages of a given
size. iPerf doesn’t have multi-streaming capability. Multi-
streaming tests were done using a small traffic generator that
we cobbled up. Before making a comparison between TCP
and SCTP, it is important ensure that they are configured
identically. One major issue is that of HW offloading. Most
current NICs provide the capability of TCP checksum
offload and Transport Segmentation Offload. (TSO). None
of these features are available for SCTP. In particular, SCTP
uses CRC-32 (as opposed CRC-16). We found that
checksum calculation is very CPU intensive. In terms of
CPU cycles, CRC-32 increases the protocol processing cost
by 24% on the send side and a whopping 42% on the receive
side! Quite clearly, high speed operation of SCTP demands
CRC32 offload. Therefore, we simply removed the CRC
code from SCTP implementation, which is almost
equivalent to doing it in special purpose HW. TSO for SCTP
would have to be lot more complex than that for TCP and
will clearly require new hardware. Therefore, we disabled
TSO for TCP, so that both protocols would do segmentation
in SW. However, one discrepancy remains. The message
based nature of SCTP requires some additional work (e.g.,
message boundary recognition on both ends) which TCP

http://lksctp.sourceforge.net/
http://www.sctp.org
http://lksctp.sourceforge.net/
http://www.sctp.org
http://lksctp.sourceforge.net/
http://www.sctp.org

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

11

does not need to do. Also, the byte stream view makes it
much easier for TCP to coalesce all bytes together.

A) Base Performance Comparisons

Table 2 shows the comparison between TCP and SCTP for a
single connection running over the GBGb NIC and pushing
8 KB packets as fast as possible under zero packet drops.
(SCTP was configured with only one stream in this case.)
The receive window size was set to 64 KB and is more than
adequate considering the small RTT (about 56 us) for the
setup. The reported performance includes the following key
parameters: (a) Average CPU cycles per instruction (CPI),
(b) Path-length or number of instructions per transfer (PL),
(c) No of cache misses per instruction in the highest level
cache (MPI), and (d) CPU utilization. Not surprisingly,
SCTP can achieve approximately the same throughput as
TCP. SCTP send, however, @@@@@@ is 2.1X
processing intensive than TCP send in terms of CPU
utilization. The CPI, PL and MPI numbers shed further light
on the nature of this inefficiency. SCTP is actually
executing 3.7X as many instructions as TCP; however, these
instructions are, on the average, simpler and have a much
better caching behavior so that the overall CPI is only 60%.
This is a tell-tale sign of a lot of data manipulation. In fact,
much of the additional SCTP path length derives from
inefficient implementation of data chunking, chunk
bundling, maintaining several linked data structures, SACK
processing, etc. On the receive end, STCP is somewhat
more efficient (1.7X of TCP). This is because SCTP receive
requires significantly less work beyond the basic TCP. The
8 KB data transfer case is presented here to illustrate
performance for applications such as iSCSI where the data
transfer sizes are fairly large and operations such as memory
to memory copy substantially impact the performance. It is
also instructive to consider performance v/s small transfer
sizes (e.g., 64 bytes). In this case, packet processing
overwhelms the CPU for both protocols (as expected);
therefore, the key measure of efficiency is the throughput
rather than the CPU utilization.

TABLE 2: 8 KB transfers, 1 CPU, 1 connection
Case Total

CPI
Path
Len.

CPU
Utility

Tput
(mb/s)

TCP Send (w/o
TSO, w/o
Chksum)

93 16607 41.6 929

SCTP Send
(w/o TSO, w/o
Chksum)

2.94 60706 89.0 916

TCP Receive
(w/o TSO, w/o
Chksum)

3.89 20590 40.3 917

SCTP Receive
(w/o TSO &
Chksum)

3.92 35920 69.4 904

Again, TCP was found more efficient than SCTP, however
the differences are very much dependent on receive window
size and data coalescing as discussed below.

Since TCP is a byte-stream oriented protocol, it can
accumulate one MTU worth of data before making a driver
call to prepare the IP datagram and send. This is, in fact, the
default TCP behavior. However, if the data is not arriving
from the application layer as a continuous stream, this
would introduce delays that may be undesirable. TCP
provides a NO-DELAY option for this (turned off by
default). SCTP, on the other hand, is message oriented and
provides chunk bundling as the primary scheme for stuffing
up an MTU. SCTP also provides a NO-DELAY option
which is turned on by default. That is, by default, whenever
the window allows a MTU to be sent, SCTP will build a
packet from the available application messages instead of
waiting for more to arrive.

B) Multi-streaming Performance

One of the justifications for providing multi-streaming in
SCTP has been the lightweight nature of streams as
compared to associations. Indeed, some of the crucial
transport functionality in SCTP (e.g., flow and congestion
control) is common to all streams and thus more easily
implemented than if it were stream specific. Consequently,
one would expect better multi-streaming performance than
multi-association performance for the same CPU utilization.

Table 3: 64 B transfers, 1 CPU, 1 connection

Case
Tput

(64 KB)

Tput

(128KB)
TCP Send (w/o TSO, w/o
Chksum)

72 134

SCTP Send (w/o TSO, w/o
chksum)

66 100

TCP Receive (w/o TSO,w/o
Chksum)

76 276

SCTP Receive (w/o TSO,
w/o Chksum)

74 223

Since the streams of a single association cannot be split over
multiple NICs, we considered the scenario of a single NIC
with one connection (or association). However, to avoid the
single NIC becoming the bottleneck, we changed the
transfer size from the usual 8 KB down to 1.28 KB. Note
that no segmentation will take place with this transfer size.
We also used a DP (dual processor) configuration here in
order to ensure that the CPU does not become a bottleneck.
Table 3 shows the results. Again, for the single stream case,
although both SCTP and TCP are able to achieve
approximately the same throughput, SCTP is even less
efficient than for the single connection case. This indicates
some deficiencies in TCB structure and handling for SCTP
which we confirmed in our experiments as well. Now, with
SCTP alone, contrary to expectations, the overall throughput

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

11

does not need to do. Also, the byte stream view makes it
much easier for TCP to coalesce all bytes together.

A) Base Performance Comparisons

Table 2 shows the comparison between TCP and SCTP for a
single connection running over the GBGb NIC and pushing
8 KB packets as fast as possible under zero packet drops.
(SCTP was configured with only one stream in this case.)
The receive window size was set to 64 KB and is more than
adequate considering the small RTT (about 56 us) for the
setup. The reported performance includes the following key
parameters: (a) Average CPU cycles per instruction (CPI),
(b) Path-length or number of instructions per transfer (PL),
(c) No of cache misses per instruction in the highest level
cache (MPI), and (d) CPU utilization. Not surprisingly,
SCTP can achieve approximately the same throughput as
TCP. SCTP send, however, @@@@@@ is 2.1X
processing intensive than TCP send in terms of CPU
utilization. The CPI, PL and MPI numbers shed further light
on the nature of this inefficiency. SCTP is actually
executing 3.7X as many instructions as TCP; however, these
instructions are, on the average, simpler and have a much
better caching behavior so that the overall CPI is only 60%.
This is a tell-tale sign of a lot of data manipulation. In fact,
much of the additional SCTP path length derives from
inefficient implementation of data chunking, chunk
bundling, maintaining several linked data structures, SACK
processing, etc. On the receive end, STCP is somewhat
more efficient (1.7X of TCP). This is because SCTP receive
requires significantly less work beyond the basic TCP. The
8 KB data transfer case is presented here to illustrate
performance for applications such as iSCSI where the data
transfer sizes are fairly large and operations such as memory
to memory copy substantially impact the performance. It is
also instructive to consider performance v/s small transfer
sizes (e.g., 64 bytes). In this case, packet processing
overwhelms the CPU for both protocols (as expected);
therefore, the key measure of efficiency is the throughput
rather than the CPU utilization.

TABLE 2: 8 KB transfers, 1 CPU, 1 connection
Case Total

CPI
Path
Len.

CPU
Utility

Tput
(mb/s)

TCP Send (w/o
TSO, w/o
Chksum)

93 16607 41.6 929

SCTP Send
(w/o TSO, w/o
Chksum)

2.94 60706 89.0 916

TCP Receive
(w/o TSO, w/o
Chksum)

3.89 20590 40.3 917

SCTP Receive
(w/o TSO &
Chksum)

3.92 35920 69.4 904

Again, TCP was found more efficient than SCTP, however
the differences are very much dependent on receive window
size and data coalescing as discussed below.

Since TCP is a byte-stream oriented protocol, it can
accumulate one MTU worth of data before making a driver
call to prepare the IP datagram and send. This is, in fact, the
default TCP behavior. However, if the data is not arriving
from the application layer as a continuous stream, this
would introduce delays that may be undesirable. TCP
provides a NO-DELAY option for this (turned off by
default). SCTP, on the other hand, is message oriented and
provides chunk bundling as the primary scheme for stuffing
up an MTU. SCTP also provides a NO-DELAY option
which is turned on by default. That is, by default, whenever
the window allows a MTU to be sent, SCTP will build a
packet from the available application messages instead of
waiting for more to arrive.

B) Multi-streaming Performance

One of the justifications for providing multi-streaming in
SCTP has been the lightweight nature of streams as
compared to associations. Indeed, some of the crucial
transport functionality in SCTP (e.g., flow and congestion
control) is common to all streams and thus more easily
implemented than if it were stream specific. Consequently,
one would expect better multi-streaming performance than
multi-association performance for the same CPU utilization.

Table 3: 64 B transfers, 1 CPU, 1 connection

Case
Tput

(64 KB)

Tput

(128KB)
TCP Send (w/o TSO, w/o
Chksum)

72 134

SCTP Send (w/o TSO, w/o
chksum)

66 100

TCP Receive (w/o TSO,w/o
Chksum)

76 276

SCTP Receive (w/o TSO,
w/o Chksum)

74 223

Since the streams of a single association cannot be split over
multiple NICs, we considered the scenario of a single NIC
with one connection (or association). However, to avoid the
single NIC becoming the bottleneck, we changed the
transfer size from the usual 8 KB down to 1.28 KB. Note
that no segmentation will take place with this transfer size.
We also used a DP (dual processor) configuration here in
order to ensure that the CPU does not become a bottleneck.
Table 3 shows the results. Again, for the single stream case,
although both SCTP and TCP are able to achieve
approximately the same throughput, SCTP is even less
efficient than for the single connection case. This indicates
some deficiencies in TCB structure and handling for SCTP
which we confirmed in our experiments as well. Now, with
SCTP alone, contrary to expectations, the overall throughput

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

11

does not need to do. Also, the byte stream view makes it
much easier for TCP to coalesce all bytes together.

A) Base Performance Comparisons

Table 2 shows the comparison between TCP and SCTP for a
single connection running over the GBGb NIC and pushing
8 KB packets as fast as possible under zero packet drops.
(SCTP was configured with only one stream in this case.)
The receive window size was set to 64 KB and is more than
adequate considering the small RTT (about 56 us) for the
setup. The reported performance includes the following key
parameters: (a) Average CPU cycles per instruction (CPI),
(b) Path-length or number of instructions per transfer (PL),
(c) No of cache misses per instruction in the highest level
cache (MPI), and (d) CPU utilization. Not surprisingly,
SCTP can achieve approximately the same throughput as
TCP. SCTP send, however, @@@@@@ is 2.1X
processing intensive than TCP send in terms of CPU
utilization. The CPI, PL and MPI numbers shed further light
on the nature of this inefficiency. SCTP is actually
executing 3.7X as many instructions as TCP; however, these
instructions are, on the average, simpler and have a much
better caching behavior so that the overall CPI is only 60%.
This is a tell-tale sign of a lot of data manipulation. In fact,
much of the additional SCTP path length derives from
inefficient implementation of data chunking, chunk
bundling, maintaining several linked data structures, SACK
processing, etc. On the receive end, STCP is somewhat
more efficient (1.7X of TCP). This is because SCTP receive
requires significantly less work beyond the basic TCP. The
8 KB data transfer case is presented here to illustrate
performance for applications such as iSCSI where the data
transfer sizes are fairly large and operations such as memory
to memory copy substantially impact the performance. It is
also instructive to consider performance v/s small transfer
sizes (e.g., 64 bytes). In this case, packet processing
overwhelms the CPU for both protocols (as expected);
therefore, the key measure of efficiency is the throughput
rather than the CPU utilization.

TABLE 2: 8 KB transfers, 1 CPU, 1 connection
Case Total

CPI
Path
Len.

CPU
Utility

Tput
(mb/s)

TCP Send (w/o
TSO, w/o
Chksum)

93 16607 41.6 929

SCTP Send
(w/o TSO, w/o
Chksum)

2.94 60706 89.0 916

TCP Receive
(w/o TSO, w/o
Chksum)

3.89 20590 40.3 917

SCTP Receive
(w/o TSO &
Chksum)

3.92 35920 69.4 904

Again, TCP was found more efficient than SCTP, however
the differences are very much dependent on receive window
size and data coalescing as discussed below.

Since TCP is a byte-stream oriented protocol, it can
accumulate one MTU worth of data before making a driver
call to prepare the IP datagram and send. This is, in fact, the
default TCP behavior. However, if the data is not arriving
from the application layer as a continuous stream, this
would introduce delays that may be undesirable. TCP
provides a NO-DELAY option for this (turned off by
default). SCTP, on the other hand, is message oriented and
provides chunk bundling as the primary scheme for stuffing
up an MTU. SCTP also provides a NO-DELAY option
which is turned on by default. That is, by default, whenever
the window allows a MTU to be sent, SCTP will build a
packet from the available application messages instead of
waiting for more to arrive.

B) Multi-streaming Performance

One of the justifications for providing multi-streaming in
SCTP has been the lightweight nature of streams as
compared to associations. Indeed, some of the crucial
transport functionality in SCTP (e.g., flow and congestion
control) is common to all streams and thus more easily
implemented than if it were stream specific. Consequently,
one would expect better multi-streaming performance than
multi-association performance for the same CPU utilization.

Table 3: 64 B transfers, 1 CPU, 1 connection

Case
Tput

(64 KB)

Tput

(128KB)
TCP Send (w/o TSO, w/o
Chksum)

72 134

SCTP Send (w/o TSO, w/o
chksum)

66 100

TCP Receive (w/o TSO,w/o
Chksum)

76 276

SCTP Receive (w/o TSO,
w/o Chksum)

74 223

Since the streams of a single association cannot be split over
multiple NICs, we considered the scenario of a single NIC
with one connection (or association). However, to avoid the
single NIC becoming the bottleneck, we changed the
transfer size from the usual 8 KB down to 1.28 KB. Note
that no segmentation will take place with this transfer size.
We also used a DP (dual processor) configuration here in
order to ensure that the CPU does not become a bottleneck.
Table 3 shows the results. Again, for the single stream case,
although both SCTP and TCP are able to achieve
approximately the same throughput, SCTP is even less
efficient than for the single connection case. This indicates
some deficiencies in TCB structure and handling for SCTP
which we confirmed in our experiments as well. Now, with
SCTP alone, contrary to expectations, the overall throughput

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

12

with 2 streams over one association is about 28% less than
that for 2 associations. However, the CPU utilization for the
2 stream case is also about 28% lower than for the 2
association case. These observations are approximately true
for both sender and receiver. So, in effect, the streams are
about the same weight as associations; furthermore, they are
also unable to drive the CPU to 100% utilization. This
smacks of a locking/ synchronization issue. On closer
examination, it was found that the streams come up short
both in terms of implementation and in terms of protocol
specification. The implementation problem is that the
sendmsg() implementation of LKSCTP locks the socket at
the beginning of the function & unlocks it when the message
is delivered to the IP-Layer. The resulting lock contention
limits stream throughput severely. This problem can be
alleviated by a change in the TCB structure along with finer
granularity locking. A more serious issue is on the receive
end – since the stream id is not known until the arriving
SCTP has been processed and the chunks removed, there is
little scope for simultaneous processing of both streams.
This is a key shortcoming of the stream feature and can only
be fixed by encoding stream information in the common
header, so that threads can start working on their target
stream as early as possible.

VI. CONCLUSION AND FUTURE WORK

So overall in this research paper, we have presented the
literature study over SCTP over data center and WAN with
respect to TCP. During the analysis, we presented many
differences among data center and WAN environments as
well as exposed some unsolved issues associated with
SCTP. The protocol and implementation are main issues
during these studies. From the implementation point of
view, it becomes important to minimize memory to memory
copies, simplify chunking data structures, reduce SACK
overhead, forego chunk bundling for larger messages,
simplify implement finer grain TCB locking mechanisms,
and TCB structure. Whereas from the side of protocol, the
major findings include re-architecting of streaming feature
to maximize parallelism and to provide a simple embedded
ACK procedure with SACK made optional. For the future
study, we will focus on improving the performance of SCTP
for multi streaming communication applications as
compared to TCP. In addition to this, there are a few other
issues already addressed by others, e.g., need for stream
priorities [3] and simultaneous transmission across multi-
homed interfaces [4] that will be very used within a data
center.

REFERENCES
[1] R. Seggelmann, M. Tuexen, and E. P. Rathgeb, “Stream Scheduling
Considerations for SCTP,” in Proceedings of the 18th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Sep. 2010.
[2] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P. Lei, “Sockets API
Extensions for Stream Control Transmission Protocol (SCTP),” Internet
Draft draft-ietftsvwg- sctpsocket-24, Oct. 2010, work in progress.
[3] R. Stewart, “Stream Control Transmission Protocol,” IETF RFC 4960,
Sep. 2007.

[4] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Specification Errata and
Issues,” IETF RFC 4460, Apr. 2006.
[5] R. Stewart, “Stream Control Transmission Protocol (SCTP) Remote
Direct Memory Access (RDMA) Direct Data Placement (DDP)
Adaptation”, Sept 2004.
[6] G. Regnier, S. Makineni, et. al., “TCP onloading for data center
servers”, Special issue of IEEE Computer on Internet data centers, Nov
2004.
[7] R. Stewart and Q. Xie, Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison Wesley, New York, 2001.
[8] P.T. Conrad and G.J. Heinz, “SCTP in battlefield networks,” MILCOM
2001, Washington, DC, pp. 289–295, Oct 2001.
[9] B. Sikdar, S. Kalyanaraman, K.D. Vastola, “Analytic models and
comparative study of latency and steady state throughput of TCP Tahoe,
Reno and SACK”, Proc. Of Globecom 2001.
[10] E.A. Heredia, C. Teng, and M. Ozkan, “Using multiresolution and
multistreaming for faster access in image database broadcast,” 1998
International Conference on Image Processing, Chicago, IL, pp. 784–788,
Oct 4-7, 1998.
[11] R. Simon, T. Znati, and R. Sclabassi, “XCAP: a multistream routing
algorithm for multimedia traffic,” Third IEEE International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, pp. 104–107, June
17-23 1996.

AUTHOR’S PROFILE

Prof. Nandgaonkar V. N. received his B.E. and
M.E. Degree in Computer Engineering from Amravati
University and Pune University, India respectively.
He is Head of Department , Computer Engineering in
NMIET, University of Pune, India, He is also a life
member of ISTE. His research interest includes study
and analysis of different communication protocols and
try to speed up the network

Prof. Patil C. G. working as Asst. Prof. at
Siddhant C.O.E., Pune, University of Pune, India. He
is also looking after the Academic Research
Department to encourage the faculties and students for
research work.

Prof. Patil S. C. received her B.E. in Computer
Engineering from BATU. She is working as Asst.
Prof. at Siddhant C.O.E., University of Pune, India.

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

12

with 2 streams over one association is about 28% less than
that for 2 associations. However, the CPU utilization for the
2 stream case is also about 28% lower than for the 2
association case. These observations are approximately true
for both sender and receiver. So, in effect, the streams are
about the same weight as associations; furthermore, they are
also unable to drive the CPU to 100% utilization. This
smacks of a locking/ synchronization issue. On closer
examination, it was found that the streams come up short
both in terms of implementation and in terms of protocol
specification. The implementation problem is that the
sendmsg() implementation of LKSCTP locks the socket at
the beginning of the function & unlocks it when the message
is delivered to the IP-Layer. The resulting lock contention
limits stream throughput severely. This problem can be
alleviated by a change in the TCB structure along with finer
granularity locking. A more serious issue is on the receive
end – since the stream id is not known until the arriving
SCTP has been processed and the chunks removed, there is
little scope for simultaneous processing of both streams.
This is a key shortcoming of the stream feature and can only
be fixed by encoding stream information in the common
header, so that threads can start working on their target
stream as early as possible.

VI. CONCLUSION AND FUTURE WORK

So overall in this research paper, we have presented the
literature study over SCTP over data center and WAN with
respect to TCP. During the analysis, we presented many
differences among data center and WAN environments as
well as exposed some unsolved issues associated with
SCTP. The protocol and implementation are main issues
during these studies. From the implementation point of
view, it becomes important to minimize memory to memory
copies, simplify chunking data structures, reduce SACK
overhead, forego chunk bundling for larger messages,
simplify implement finer grain TCB locking mechanisms,
and TCB structure. Whereas from the side of protocol, the
major findings include re-architecting of streaming feature
to maximize parallelism and to provide a simple embedded
ACK procedure with SACK made optional. For the future
study, we will focus on improving the performance of SCTP
for multi streaming communication applications as
compared to TCP. In addition to this, there are a few other
issues already addressed by others, e.g., need for stream
priorities [3] and simultaneous transmission across multi-
homed interfaces [4] that will be very used within a data
center.

REFERENCES
[1] R. Seggelmann, M. Tuexen, and E. P. Rathgeb, “Stream Scheduling
Considerations for SCTP,” in Proceedings of the 18th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Sep. 2010.
[2] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P. Lei, “Sockets API
Extensions for Stream Control Transmission Protocol (SCTP),” Internet
Draft draft-ietftsvwg- sctpsocket-24, Oct. 2010, work in progress.
[3] R. Stewart, “Stream Control Transmission Protocol,” IETF RFC 4960,
Sep. 2007.

[4] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Specification Errata and
Issues,” IETF RFC 4460, Apr. 2006.
[5] R. Stewart, “Stream Control Transmission Protocol (SCTP) Remote
Direct Memory Access (RDMA) Direct Data Placement (DDP)
Adaptation”, Sept 2004.
[6] G. Regnier, S. Makineni, et. al., “TCP onloading for data center
servers”, Special issue of IEEE Computer on Internet data centers, Nov
2004.
[7] R. Stewart and Q. Xie, Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison Wesley, New York, 2001.
[8] P.T. Conrad and G.J. Heinz, “SCTP in battlefield networks,” MILCOM
2001, Washington, DC, pp. 289–295, Oct 2001.
[9] B. Sikdar, S. Kalyanaraman, K.D. Vastola, “Analytic models and
comparative study of latency and steady state throughput of TCP Tahoe,
Reno and SACK”, Proc. Of Globecom 2001.
[10] E.A. Heredia, C. Teng, and M. Ozkan, “Using multiresolution and
multistreaming for faster access in image database broadcast,” 1998
International Conference on Image Processing, Chicago, IL, pp. 784–788,
Oct 4-7, 1998.
[11] R. Simon, T. Znati, and R. Sclabassi, “XCAP: a multistream routing
algorithm for multimedia traffic,” Third IEEE International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, pp. 104–107, June
17-23 1996.

AUTHOR’S PROFILE

Prof. Nandgaonkar V. N. received his B.E. and
M.E. Degree in Computer Engineering from Amravati
University and Pune University, India respectively.
He is Head of Department , Computer Engineering in
NMIET, University of Pune, India, He is also a life
member of ISTE. His research interest includes study
and analysis of different communication protocols and
try to speed up the network

Prof. Patil C. G. working as Asst. Prof. at
Siddhant C.O.E., Pune, University of Pune, India. He
is also looking after the Academic Research
Department to encourage the faculties and students for
research work.

Prof. Patil S. C. received her B.E. in Computer
Engineering from BATU. She is working as Asst.
Prof. at Siddhant C.O.E., University of Pune, India.

International Journal of Electronics, Communication & Soft Computing Science and Engineering
ISSN: 2277-9477, Volume 2, Issue 6

12

with 2 streams over one association is about 28% less than
that for 2 associations. However, the CPU utilization for the
2 stream case is also about 28% lower than for the 2
association case. These observations are approximately true
for both sender and receiver. So, in effect, the streams are
about the same weight as associations; furthermore, they are
also unable to drive the CPU to 100% utilization. This
smacks of a locking/ synchronization issue. On closer
examination, it was found that the streams come up short
both in terms of implementation and in terms of protocol
specification. The implementation problem is that the
sendmsg() implementation of LKSCTP locks the socket at
the beginning of the function & unlocks it when the message
is delivered to the IP-Layer. The resulting lock contention
limits stream throughput severely. This problem can be
alleviated by a change in the TCB structure along with finer
granularity locking. A more serious issue is on the receive
end – since the stream id is not known until the arriving
SCTP has been processed and the chunks removed, there is
little scope for simultaneous processing of both streams.
This is a key shortcoming of the stream feature and can only
be fixed by encoding stream information in the common
header, so that threads can start working on their target
stream as early as possible.

VI. CONCLUSION AND FUTURE WORK

So overall in this research paper, we have presented the
literature study over SCTP over data center and WAN with
respect to TCP. During the analysis, we presented many
differences among data center and WAN environments as
well as exposed some unsolved issues associated with
SCTP. The protocol and implementation are main issues
during these studies. From the implementation point of
view, it becomes important to minimize memory to memory
copies, simplify chunking data structures, reduce SACK
overhead, forego chunk bundling for larger messages,
simplify implement finer grain TCB locking mechanisms,
and TCB structure. Whereas from the side of protocol, the
major findings include re-architecting of streaming feature
to maximize parallelism and to provide a simple embedded
ACK procedure with SACK made optional. For the future
study, we will focus on improving the performance of SCTP
for multi streaming communication applications as
compared to TCP. In addition to this, there are a few other
issues already addressed by others, e.g., need for stream
priorities [3] and simultaneous transmission across multi-
homed interfaces [4] that will be very used within a data
center.

REFERENCES
[1] R. Seggelmann, M. Tuexen, and E. P. Rathgeb, “Stream Scheduling
Considerations for SCTP,” in Proceedings of the 18th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Sep. 2010.
[2] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P. Lei, “Sockets API
Extensions for Stream Control Transmission Protocol (SCTP),” Internet
Draft draft-ietftsvwg- sctpsocket-24, Oct. 2010, work in progress.
[3] R. Stewart, “Stream Control Transmission Protocol,” IETF RFC 4960,
Sep. 2007.

[4] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Specification Errata and
Issues,” IETF RFC 4460, Apr. 2006.
[5] R. Stewart, “Stream Control Transmission Protocol (SCTP) Remote
Direct Memory Access (RDMA) Direct Data Placement (DDP)
Adaptation”, Sept 2004.
[6] G. Regnier, S. Makineni, et. al., “TCP onloading for data center
servers”, Special issue of IEEE Computer on Internet data centers, Nov
2004.
[7] R. Stewart and Q. Xie, Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison Wesley, New York, 2001.
[8] P.T. Conrad and G.J. Heinz, “SCTP in battlefield networks,” MILCOM
2001, Washington, DC, pp. 289–295, Oct 2001.
[9] B. Sikdar, S. Kalyanaraman, K.D. Vastola, “Analytic models and
comparative study of latency and steady state throughput of TCP Tahoe,
Reno and SACK”, Proc. Of Globecom 2001.
[10] E.A. Heredia, C. Teng, and M. Ozkan, “Using multiresolution and
multistreaming for faster access in image database broadcast,” 1998
International Conference on Image Processing, Chicago, IL, pp. 784–788,
Oct 4-7, 1998.
[11] R. Simon, T. Znati, and R. Sclabassi, “XCAP: a multistream routing
algorithm for multimedia traffic,” Third IEEE International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, pp. 104–107, June
17-23 1996.

AUTHOR’S PROFILE

Prof. Nandgaonkar V. N. received his B.E. and
M.E. Degree in Computer Engineering from Amravati
University and Pune University, India respectively.
He is Head of Department , Computer Engineering in
NMIET, University of Pune, India, He is also a life
member of ISTE. His research interest includes study
and analysis of different communication protocols and
try to speed up the network

Prof. Patil C. G. working as Asst. Prof. at
Siddhant C.O.E., Pune, University of Pune, India. He
is also looking after the Academic Research
Department to encourage the faculties and students for
research work.

Prof. Patil S. C. received her B.E. in Computer
Engineering from BATU. She is working as Asst.
Prof. at Siddhant C.O.E., University of Pune, India.

